Jump to content

Welcome to ExtremeHW

Welcome to ExtremeHW, like most online communities you must register to view or post in our community, but don't worry this is a simple free process that requires minimal information for you to signup. Be a part of ExtremeHW by signing in or creating an account.

  • Start new topics and reply to others
  • Subscribe to topics and forums to get email updates
  • Get your own profile page and make new friends
  • Send personal messages to other members.
  • Take advantage of site exclusive features.


EHW Content Creator
  • Posts

  • Joined

  • Last visited

  • Days Won

  • Feedback


mllrkllr88 last won the day on May 27 2020

mllrkllr88 had the most thanked content!


9 Has started their journey

About mllrkllr88

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Hey keyboard nuts! My wife is about to take a hammer to my current mechanical keyboard because of the late night typing. I need a recommendation of a silent mechanical keyboard, something similar or quieter than a rubber dome one. As for the budget I'd like to stay in the $75 range if possible...
  2. Source: https://www.teamgroupinc.com/en/news/ins.php?index_id=150 Team Group has a new mask out, what do you guys think, would you wear it?
  3. Hey Guys! I have been using my smartphone for review pictures, but I am continually fighting it and I want to try something new. I really don't know anything about cameras, but I want to try out a simple pint and shoot. I have been looking at cameras on eBay and I was just going to randomly grab something around the $100 price range, but thought it would be a good idea to reach out first. I was looking at the Sony DSC-W800, it seems like a good piece of hardware for the price. I am looking for something that takes amazing pictures (mostly macro), is easy to use even for a complete noob, and is also cheap AF....that's all ? Any help for this noob? Want to trade me a camera for some computer hardware?
  4. Team Group has as a huge selection of innovative RGB incorporated products, and on September 22 their product line is getting even bigger. Full news article: https://www.teamgroupinc.com/en/news/ins.php?index_id=142&fbclid=IwAR0WBrHyi2-o2pVNnLFDegl3D6HMXa4JacndGoPUQYlLXCNX5TL1AHzxuK8
  5. That's exactly right! I have also seen cards with damaged PLL, 5V, and 3.3V rails...all of those broken voltage regulators could be replaced with this device. It has lots of applications outside of extreme overclocking! Thank you! And yes...my wife would say the exact same thing...with a strong eye-roll tossed in for good measure
  6. Elmor recently started taking orders for the AMPLE 20A power card. It’s a simple little single-phase VRM that can be used to replace a broken VRM or simply overcome that pesky OCP/OVP. The most common potential usage would be for a GPU memory rail. However, with an output voltage from 1.0-3.4 V it could be used for many different applications. I obtained a test sample of this new device and I intend to put it to the ultimate test. I have an RX 580 GPU with a damaged memory voltage rail, but otherwise the GPU is in perfect condition. The plan is to solder on the AMPLE power card and observe the impact on the memory overclocking. I know what the card was capable of before the memory VRM died, so it’s the perfect test case for this little device. So follow along as I put this thing to the test and find out if it’s capable of delivering sufficient power to 8 GB of GDDR5. The AMPLE Device The device ships in an anti-static bag with the 6-pin connector added in as an accessory. This gives you the flexibility to power up the AMPLE from any qualifying voltage source you desire. Product Specification Output voltage adjustable 1.0-3.4 V using the on-board potentiometer (range can be increased by adding your own potentiometer) Nominal input voltage 12 V (functional from 4.5 V up to 16 V) Max output current 20 A (thermally limited). Active cooling may be required to achieve high output current. Efficiency at max output 91.5% (3.4 V, 20 A, 750 KHz) Switching frequency selectable between 300 KHz and 750 KHz OVP (+20%), OCP (24A) and OTP (Tj = 150*C) Output voltage can be monitored and adjusted using the EVC2 VMOD1-header Ships with a PCIE 6-pin power connector which can be soldered on by the user Switch 1 OFF = 750 KHz switching frequency Switch 1 ON = 300 KHz switching frequency Switch 2 OFF = PSM = Power Saving Mode, higher ripple but lower loss at low loads Switch 2 ON = CCM = Constant Conduction Mode. The PMIC is always regulating to the best of its ability, for the tightest possible voltage regulation. In some cases, for example with this project at 3.0V+, that will create a high loss in no-load or low-load situations. Source Credit: elmorlabs.com There is one switch on the device which acts as a mode selector. There are a total of 4 different combinations you can set, which change the output delivery settings. For controlling the voltage there are multiple different methods you can choose from. To make things simple, there is a potentiometer on the power card for direct control. For more advanced control, you have the ability to integrate the device with an EVC2 module using the vmod connection. Mounting the Power Card Before you just hastily solder on the AMPLE device, you should take the time to power it on and make sure it works. I would suggest powering it up and setting the desired voltage before you attempt to solder it on a GPU. The underside of the AMPLE has power and ground planes. In my particular case I won't need these connections so I decided to insulate them with a few layers of Kapton tape. This is an unnecessary step, but in my case there were a few components on the card which were extremely close to shorting on the AMPLE device. I chose to mount mine with 0.8 mm copper plate. I kept the plane-to-plane distance as short as possible. Furthermore, I always prefer to make my ground connections on the front of the card after where the main connection is. In the picture below you can see both ground connections come after the memory plan connection. In my testing this provides the best realized MHz whether it be core or memory external VRM replacement. Test Setup The overall goal is to compare stock PCB memory overclocking with AMPLE power memory overclocking. To make the test consistent, I will use the same load voltage for both test conditions. The test methodology is to overclock memory and record the passable frequency in Fire Strike GT1. I will start at 2280 MHz, increase +10 MHz until it becomes unstable PowerColor RX580 8GB Golden Sample Z490 test platform AMPLE VRM on memory rail Memory IC: Micron D9VVR 1625 MHz strap timings copied to 2000 MHz strap (Most efficient timings possible without diminishing returns on frequency) In order to get a realistic look at the voltage response of the device, I have placed voltage test points (TP1-3) at various distances away from the main inductor. During the load tests, I will also be conducting thermal tests of the mosfet heatsink. Ambient temperature for all tests around 24c The voltage read points are as follows: TP1 = AMPLE power voltage at C10 cap TP2 = GPU plane voltage at solder connection TP3 = Memory IC voltage at MLCC cap on back of card, at least 100mm distance from AMPLE Vout solder connection Test Results Voltage droop is the enemy of external VRM mods. It’s important to know exactly where the voltage droop occurs because it can narrow down the cause. The voltage test point results indicate that the droop is not caused by the solder connection. The voltage droop is present at the C10 capacitor so therefore it’s coming directly from the AMPLE VRM. This makes me happy because the solder connection is relatively perfect, but it’s mildly concerning to see the AMPLE being stressed under load. Regardless of any droop, the card was still able to pass FS GT1 test at the highest possible memory frequency. There is effectively no difference between the stock VRM and the AMPLE VRM for this test application. The temperature reached a peak at the end of GT2 and was still climbing. With the Fire Strike test, GT3 is CPU based so it had a cooldown period. The max temp of around 50c seems reasonable but further testing may be needed. Sustained loads of 1hr might show a different result. SW1 Test results proved inconclusive. Disregarding experimental error, there was effectively no difference in the realized MHz or voltage response. Conclusion Overall I am extremely pleased with this little device. It performed exceptionally well and the end result is that I was able to achieve the same overclocking performance as the stock PCB. The AMPLE single-phase power card has been validated for benchmarking purposes. In terms of the switch options, my expectation was that CCM mode with 750 KHz would be the optimal configuration. The switch test results showed that the various combinations didn't have any noticeable effect on realized Mhz or voltage response. The 10 mV voltage droop is a mild concern because it’s coming directly from the AMPLE, however, it did not affect the overall overclocking result. With a price tag of just $20,, it’s an absolute must-have tool for extreme overclockers. My RX580 is the perfect use case. The card was effectively dead and useless, but the mighty little AMPLE device brought it back to life and it still holds gold in TIme Spy. Even if the price was tripled, I would still recommend it because of its potential value. This was just my first test, stay tuned for more tests to come.
  7. Wow, really nice! This is a great tool and very useful, thank you! I am often testing different versions of W10 for benchmark efficiency, this makes it nice and easy to grab any one I want.
  8. Ok guys, anyone out there able to help me setup and optimize Threadripper 3970X? It looks like some people are getting it up to 1 million PPD...which seems like alot for a CPU?? I did a bit of googling and it seems there are some tweaks that need to happen to get the max out of this thing. I read some stuff about 'slot' settings for core/thread count but I am totally clueless. Also, can anyone give me a really quick summary of how this scales with overclocking? For instance, how much system memory does it use and what the score increase? Overclocking CPU? Mem? I've been in the professional XOC world for some years now but never touched folding until yesterday...I know nothing.
  9. Good catch, I let it munch last night then saw this a few minutes ago. I swapped teams and now it's working again
  10. I have never folded a day in my life, but I have a rig I can setup and try this out I might need some help from the folding pro's...
  11. All basic mode... 1920x1080 with 60Hz The bench automatically loaded in a window, which I have no clue what size that is. I did nothing but install and run on a dirty v1909 W10 install.
  12. Bone stock run with absolutely ZERO tweaks or OS optimizations.... This is just a simple 9900k on Z170 with XMP memory and a stock 2080Ti KP. It looks like the score is higher than it should be, bummer this bench is so inconstant.
  13. I am getting setup to play with this bench again. Looking forward to helping out with the testing and seeing if we can figure out the how it scales. My biggest complaint is that this bench cannot be run in offline mode, and requires a huge download.
  14. Oh that's really odd. I only did a quick run and I don't remember what my config was. I will have to play more and nail down how this bench works.
  15. A few things here. Firstly this bench is very inconstant in terms of run-to-run score. Run the bench 5 times and you will see a big variange. I saw a big gain from disabling SMT, so that's something you can try.
  • Create New...

Important Information

This Website may place and access certain Cookies on your computer. ExtremeHW uses Cookies to improve your experience of using the Website and to improve our range of products and services. ExtremeHW has carefully chosen these Cookies and has taken steps to ensure that your privacy is protected and respected at all times. All Cookies used by this Website are used in accordance with current UK and EU Cookie Law. For more information please see our Privacy Policy